导航:首页 > 中考作文 > 广东数学初中学业水平考试大纲

广东数学初中学业水平考试大纲

发布时间:2020-12-08 19:25:19

A. 初中数学的教师资格证,考试大纲是什么

一、考试目标

1.学科知识的掌握和运用。掌握大学专科数学专业基础课程的知识、中学数学的知识。具有在初中数学教学实践中综合而有效地运用这些知识的能力。

2.初中数学课程知识的掌握和运用。理解初中数学课程的性质、基本理念和目标,熟悉《义务教育数学课程标准(2011年版)》(以下简称《课标》)规定的教学内容和要求。

3. 数学教学知识的掌握和应用。理解有关的数学教学知识,具有教学设计、教学实施和教学评价的能力。

二、考试内容模块与要求

1.学科知识

数学学科知识包括大学专科数学专业基础课程、高中数学课程中的必修内容和部分选修内容以及初中数学课程中的内容知识。

大学专科数学专业基础课程知识是指:数学分析、高等代数、解析几何、概率论与数理统计等大学专科数学课程中与中学数学密切相关的内容。

其内容要求是:准确掌握基本概念,熟练进行运算,并能够利用这些知识去解决中学数学的问题。

高中数学课程中的必修内容和部分选修内容以及初中数学课程知识是指高中数学课程中的必修内容、选修课中的系列1、2的内容以及选修3—1(数学史选讲),选修4—1(几何证明选讲)、选修4—2(矩阵与变换)、选修4—4(坐标系与参数方程)、选修4—5(不等式选讲)以及初中课程中的全部数学知识。

其内容要求是:理解中学数学中的重要概念,掌握中学数学中的重要公式、定理、法则等知识,掌握中学常见的数学思想方法,具有空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力以及综合运用能力。

2.课程知识

了解初中数学课程的性质、基本理念和目标。

熟悉《课标》所规定的教学内容的知识体系,掌握《课标》对教学内容的要求。

能运用《课标》指导自己的数学教学实践。

3.教学知识

掌握讲授法、讨论法、自学辅导法、发现法等常见的数学教学方法。

掌握概念教学、命题教学等数学教学知识的基本内容。

了解包括备课、课堂教学、作业批改与考试、数学课外活动、数学教学评价等基本环节的教学过程。

掌握合作学习、探究学习、自主学习等中学数学学习方式。

掌握数学教学评价的基本知识和方法。

4.教学技能

(1)教学设计

能够根据学生已有的知识水平和数学学习经验,准确把握所教内容与学生已学知识的联系。

能够根据《课标》的要求和学生的认知特征确定教学目标、教学重点和难点。

能正确把握数学教学内容,揭示数学概念、法则、结论的发展过程和本质,渗透数学思想方法,体现应用与创新意识。

能选择适当的教学方法和手段,合理安排教学过程和教学内容,在规定的时间内完成所选教学内容的教案设计。

(2)教学实施

能创设合理的数学教学情境,激发学生的数学学习兴趣,引导学生自主探索、猜想和合作交流。

能依据数学学科特点和学生的认知特征,恰当地运用教学方法和手段,有效地进行数学课堂教学。

能结合具体数学教学情境,正确处理数学教学中的各种问题。

(3)教学评价

能采用不同的方式和方法,对学生知识技能、数学思考、问题解决和情感态度等方面进行恰当地评价。

能对教师数学教学过程进行评价。

能够通过教学评价改进教学和促进学生的发展。

三 、 试卷结构

B. 求深圳市2017-2018中考数学考试大纲和考试说明!

. 考核目标与要求 根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的专《普通高中课程属方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列2和系列4的内容,确定理工类高考数学科考试内容. 一

C. 2010年广东省中考数学考试大纲

清远市2010年初中毕业生数学学科
学业考试大纲和考试说明

一、 考试性质
参照近几年《广东省初中毕业生数学学科学业考试大纲》的精神和要求,初中毕业生数学学科学业考试(以下简称“数学学业考试”)是义务教育队数学学科的终结性考试,目的是全面准确地评估初中毕业生达到《全日制义务教育数学课程标准》(以下简称《标准》)所规定的数学毕业水平的程度。考试的结果既是考查初中毕业生数学学业水平是否达到《标准》的主要依据,也是高中阶段学校招生的重要依据之一。
二、 指导思想
1、 有利于引导和促进数学教学、全面落实《标准》所设立的课程
目标;有利于改善学生的数学学习方式,丰富学生的数学学习体验,提高学生学习数学的效率;有利于高中阶段学校综合、有效地评价学生的数学学习状况。
2、 数学学业考试既要重视对学生学习数学知识与技能的结果和
过程的评价,也要重视对学生在数学思考能力和解决问题能力方面发展状况的评价,还应当重视对学生数学认识水平的评价。
3、 数学学业考试命题应当面向全体学生,根据学生的年龄特征、
个性特点和生活经验来编制试题,参考答案与评分标准的制订应力求准确、明了、具有可操作性,应以开放的态度对待合理但没有预见到的答案形式,尊重不同的解答方法和表述方式,力求公正、客观、全面、准确地评价学生通过义务教育阶段的数学学习所获得的相应发展水平。
三、 考试依据
(一) 教育部2001年颁布的《全日制义务教育数学课程标准》(实
验稿)
(二) 教育部2002年颁布的《关于积极推进中小学评价与考试制
度改革的通知》
(三) 我市初中数学教学的实际情况。
四、 考试方式与试卷结构
(一) 考试方式:学生独立完成,闭卷、书面、笔答形式。
(二) 考试时间:100分钟
(三) 试卷结构:选择题10道,填空题6道,解答题12道,共
28道题。选择题为四选一型的单项选择题;填空题只要求直接填写最后结果;解答题包括计算题、证明题、应用题、作图题,解答应写出必要的文字说明、演算步骤或推证过程。全卷总分120分。
(四) 试卷难度:整卷难度控制在0.50—0.60:
难度系数在0.7以上的题为容易题,难度系数在0.4—0.7之间的题为中等题,难度系数小于0.4的为难题。
三种试题分值比(依次)为 6:3:1
五、考试内容与要求
数学学业考试严格以《标准》中的内容标准和目标要求为依据,不得超越。主要考查数学基础知识和基本技能;数学思考;解决问题的能力;对数学的基本认识和数学活动过程等。
六、其他说明:
1、将由本室提供两份中考数学模拟试题,在《中学生报》(清远中考增刊)上发表,供学生自主自愿订阅。
2、数学科考试时允许带计算器进考场。根据清远市教育局有关通知要求,可以进中考考场的计算器型号分别是:深圳凌锋电子有限公司生产的“深南雁LF-118C型”科学计算器和江苏淮安锡光科教工贸有限公司生产的“锡光SC-118C型”科学计算器。
3、数学教师一定要认真领会、准确把握全日制义务教育《数学课程标准》对“知识技能目标”和“过程性目标”中关于“了解、理解、掌握、灵活运用”和“经历(感受)、体验(体会)、探索”等目标动词的含义的界定和说明,狠抓基础,同时要关注本市中考模拟试题和近年来各地(特别是2008、2009年本市中考)的新课改中考命题改革的大趋势,切实指导学生提高中考复习备考的质量与效率。

清远市教育局教研室
二00九年十二月

D. 高考数学考试大纲

高考数学考试大纲,
省市不同,大纲会有些许不同的,
建议你直接问你们数学老师,这样才不会走冤枉路的。

E. 高中数学考试大纲主要考哪些内容

数学

考试大纲

全国教师教育网络联盟入学联考
高中起点升专科
数学课程考试大纲

总要求

本大纲是网络学院联盟高中起点数学考试大纲,目的是为网络学院选拔合格的学生。
本大纲对所列知识提出了三个层次和相应要求,三个层次由低到高顺序排列,高一级层次的要求包含低一级层次的要求。
三个层次分别为:
了解 要求考生对所列知识的含义有初步的认识,识记有关内容,并能直接运用。
理解、掌握、会 要求考生对所列知识的含义有比较深刻的认识,能够解释、举例或变形、推断,并能运用知识解决有关问题。
灵活运用 要求考生对所列知识能够综合运用,并能解决较为复杂的数学问题。

第一部分 考试内容
一、代数
(一) 数式、方程和方程组
1. 理解有理数、实数及数轴、相反数、绝对值、倒数、算术平方根的概念,会进行有关的计算。
2. 理解有关整式、分式、二次根式的概念,掌握它们的一些性质和运算法则。
3. 掌握一元一次方程、一元二次方程、二元一次方程组、三元一次方程组的解法;会解由一个二元二次方程和一个二元一次方程组成的方程组;会解简单的由两个二元二次方程组成的方程组。
(二) 函数
1. 了解集合的意义及其表示方法;了解空集、全集、子集、交集、并集、补集的概念及其表示方法,了解符号的含义,并能运用这些符号表示元素与集合、集合与集合的关系。
2. 理解函数的概念,会求一些常见函数的定义域。
3. 理解函数的单调性和奇偶性的概念,掌握增函数、减函数及奇函数、偶函数的图像特征。
4. 理解一次函数、反比例函数的概念,掌握它们的图像和性质,会求它们的解析式。
5. 理解二次函数的概念,掌握二次函数的图像和性质,掌握二次函数 与 的图像间的关系;会求二次函数的解析式及最大值或最小值,能灵活运用二次函数的知识解决有关问题。
6. 理解幂函数的概念,掌握幂函数的图像和性质。
7. 了解反函数的意义,会求一些简单函数的反函数。
8. 理解指数与对数的概念,掌握有关的运算法则。
9. 理解指数函数与对数函数的概念,掌握它们的图像和性质,会用它们解决有关问题。
(三) 不等式和不等式组
1. 理解不等式的性质,会用基本不等式(R),(R),解决一些简单问题。
2. 会解一元一次不等式、一元一次不等式组和可化为一元一次不等式组的不等式;会解一元二次不等式;了解区间的概念,会在数轴上表示不等式或不等式组的解集。
3. 了解绝对值不等式的性质,会解形如和的绝对值不等式。
(四) 数列
1. 了解数列及其有关概念。
2. 理解等差数列、等差中项的概念,会运用等差数列的通项公式、前n项和公式解决有关问题。
3. 理解等比数列、等比中项的概念,会用等比数列的通项公式、前n项和公式解决有关问题。
二、三角
(一) 三角函数及其有关概念
1. 了解正角、负角、零角的概念,理解象限角和终边相同的角的概念。
2. 了解弧度的概念,会进行弧度与角度的换算。
3. 理解任意角三角函数的概念,了解三角函数在各象限的符号和特殊角的三角函数值。
(二) 三角函数式的变换
1. 掌握同角三角函数间的基本关系式、诱导公式,会用它们进行计算、化简和证明。
2. 掌握两角和、两角差、二倍角的正弦、余弦、正切公式,会用它们进行计算、化简和证明。
(三) 三角函数的图像和性质
1. 掌握正弦函数、余弦函数的图像和性质,会用这两个函数的性质(定义域、值域、周期性、奇偶性和单调性)解决有关问题。
2. 了解正切函数的图像和性质。
3. 会求函数的周期、最大值和最小值。
4. 了解反正弦、反余弦、反正切、反余切函数的概念及其定义域和值域;会计算常用反三角函数值。
三、平面解析几何
(一) 平面向量
1. 理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
2. 掌握向量的加、减运算,掌握数乘向量的运算;了解两个向量共线的条件。
3. 掌握向量数量积运算,了解其几何意义和在处理长度、角度及垂直问题的应用;了解向量垂直的条件。
4. 掌握向量的直角坐标及其运算。
5. 掌握平面内两点间的距离公式、线段的中点公式。
(二) 直线
1. 理解直线的倾斜角和斜率的概念,会求直线的斜率。
2. 会求直线方程,能灵活运用直线方程解决有关问题。
3. 掌握两条直线平行与垂直的条件以及点到直线的距离公式,会用它们解决有关问题;了解两条直线所成角的公式。
(三) 圆锥曲线
1. 了解曲线和方程的关系,会求两条曲线的交点。
2. 掌握圆的标准方程和一般方程,掌握直线与圆的位置关系,能灵活运用它们解决有关问题。
3. 理解椭圆、双曲线、抛物线的概念,掌握它们的标准方程和性质,会用它们解决有关问题。
第二部分 试卷结构

考试采用闭卷笔试形式,全卷满分100分,考试时间为120分钟,考试中可以使用计算器。
一、内容比例
代数 约 65%
三角 约 25%
平面解析几何 约 10%
二、题型比例
选择题 约 35%
填空题 约 25%
解答题 约 40%
三、难易比例
容易题 约 40%
中等难度题 约 40%
较难题 约 20%

参考书:《全国各类成人高考复习指导丛书高中起点升本、专科 数学(文史类) 第十二版》 相关章节 郑洪深主编 高等教育出版社

F. 考研大纲和数学教学大纲间有什么区别}

不知道你这边的数学考试大纲是需要那边的
1.数学基础75 分,有以下两种题型:
(1)问题求解15 小题,每小题3 分,共45 分
(2)条件充分性判断10 小题,每小题3 分,共30 分
2.逻辑推理30 小题,每小题2 分,共60 分
3.写作2 小题,其中论证有效性分析30 分,论说文35 分,共65 分
Ⅳ、考试范围
一、数学基础
综合能力考试中的数学基础部分主要考查考生的运算能力、逻辑推理能力、
空间想象能力和数据处理能力,通过问题求解和条件充分性判断两种形式来测试。
试题涉及的数学知识范围有:
(一)算术
1.整数
(1) 整数及其运算
(2) 整除、公倍数、公约数
(3) 奇数、偶数
(4) 质数、合数
2.分数、小数、百分数
3.比与比例
4.数轴与绝对值
(二)代数
1.整式
(1)整式及其运算
(2)整式的因式与因式分解
2.分式及其运算
3.函数
(1)集合
(2)一元二次函数及其图像
(3)指数函数、对数函数
4.代数方程
(1)一元一次方程
(2)一元二次方程
(3)二元一次方程组
5.不等式
(1)不等式的性质
(2)均值不等式
(3)不等式求解
一元一次不等式(组),一元二次不等式,简单绝对值不等式,简单分式不等式。
6.数列、等差数列、等比数列
(三)几何
1.平面图形
(1)三角形
(2)四边形
矩形、平行四边形、梯形
(3)圆与扇形
2.空间几何体
(1)长方形
(2)柱体
(3)球体
3.平面解析几何
(1)平面直角坐标系
(2)直线方程与圆的方程
(3)两点间距离公式与点到直线的距离公式
(四)数据分析
1.计数原理
(1)加法原理、乘法原理
(2)排列与排列数
(3)组合与组合数
2.数据描述
(1)平均值
(2)方差与标准差
(3)数据的图表表示直方图,饼图,数表。
3.概率
(1)事件及其简单运算
(2)加法公式
(3)乘法公式
(4)古典概型
(5)伯努利概型

G. 高等数学考试大纲

东南大学软件工程硕士(单证)入学考试
《高等数学》考试大纲

一、函数、极限、连续
考试内容
函数的概念及表示法、函数的有界性、单调性、周期性和奇偶性、复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数、简单应用问题的函数关系的建立 数列极限与函数极限的定义以及它们的性质函数的左极限与右极限无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较 极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则、两个重要极限、函数连续的概念、函数间断点的类型、初等函数的连续性、闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)
考试要求
1.理解函数的概念,掌握函数的表示方法。
2.了解函数的奇偶性、单调性、周期性和有界性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形。
5.会建立简单应用问题中的函数关系式。
6.理解极限的概念,理解函数的左极限与右极限的概念,以及极限存在与左、右极限之间的关系。
7.掌握极限的性质及四则运算法则。
8.掌握极限存在的两个准则,并会利用它们求极限极限求极限的方法。掌握利用两个重要极限求极限的方法。
9.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
10.理解函数的连续性的概念(含左、右连续),会判别函数间断点类型。
11.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
二、一元函数微分学
考试内容
导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系、严面曲线的切线和法线、基本初等函数的导数导数和微分的四则运算复合函数、反函数、隐函数以及参数方程所确定的函数的微分法、高阶导数的概念某些简单函数的n阶导数一阶微分形式不变性、罗尔(Rolle)定理拉格朗日(Lagrange)中值定理、泰勒(Taylor)定理、洛必达(uHospital)法则、函数的极值及其求法、函数单调性、函数图形的凹凸性、拐点及渐近线函数图形的描绘、函数最大值和最小值的求法及简单应用、弧微分。
考试要求
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求严面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
2.掌握导数四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分四则运算法则和一阶微分形式不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的n阶导数。
4.会求分段函数的一阶、二阶导数。
5.会求隐函数和由参数方程所确定的函数的一阶、二阶导数,会求反函数的导数。
6.理解并会用罗尔定理、拉格朗日中值定理,了解泰勒定理。
7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值方法,掌握函数最大值和最小值的求法及其简单应用。
8.会用导数判断函数图形的凹凸性和拐点,会求函数图形的水平、垂直和斜渐近线。
9.掌握用洛必达法则求未定式极限的方法。
三、一元函数积分学
考试内容
原函数和不定积分的概念、不定积分的基本性质基本积分公式、定积分的概念和基本性质、定积分中值定理变上限定积分定义的函数及其导数、牛顿—莱布尼茨(Nwtn—Leibniz)公式、不定积分和定积分的换元积分法和分部、积分法广义积分的概念及其计算、定积分的应用。
考试要求
1.理解原函数概念,理解不定积分和定积分的概念。
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。
3.理解变上限定积分定义的函数,会求它的导数,掌握牛顿—莱布尼茨公式。
4.了解广义积分的概念及会计算广义积分。
5.掌握用定积分表达和计算一些几何量与物理量(下面图形的面积、曲线的弧长、旋转体的体积及侧面积、下行截面面积为已知的立体体积、作功、引力、压力及函数的严均值等)。
四、常微分方程
考试内容
常微分方程的概念、分离的方程齐次方程、微分方程的解、阶、通解、初始条件和特解变量可分离方程、奇次方程、一阶线性方程、二阶线性微分方程解的性质及解的结构定理、二阶常系数齐次线性微分方程、简单的二阶常系数非齐次线性微分方程微分方程的简单应用。
考试要求
1.了解微分方程及其解、阶、通解、初始条件和特解等概念。
2.掌握变量可分离的方程、齐次方程及一阶线性方程的解法。
3.理解二阶线性微分方程解的性质及解的结构定理。
4.掌握二阶常系数齐次线性微分方程的解法。
5.会求自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和的二阶常系数非齐次线性微分方程的特解和通解。
6.会用微分方程解决一些简单的应用问题。

参考资料::《全国工程硕士研究生入学考试数学考试大纲及考前辅导教材》,清华大学出版社

H. 考研数学一大纲的内容与要求

函数极限连续

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.
6.掌握极限的性质及四则运算法则.
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
一元函数微分学
考试要求
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.
6.掌握用洛必达法则求未定式极限的方法.
7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.
8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。当f''(x)>0 时,f(x) 的图形是凹的;当f(x) <0时,f(x) 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.
一元函数积分学
考试要求
1.理解原函数的概念,理解不定积分和定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
3.会求有理函数、三角函数有理式和简单无理函数的积分.
4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
5.了解反常积分的概念,会计算反常积分.
6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.
向量代数和空间解析几何
考试要求
1.理解空间直角坐标系,理解向量的概念及其表示.
2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.
3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.
4.掌握平面方程和直线方程及其求法.
5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.
6.会求点到直线以及点到平面的距离.
7.了解曲面方程和空间曲线方程的概念.
8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.
9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.
多元函数微分学
考试要求
1.理解多元函数的概念,理解二元函数的几何意义.
2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.
3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.
4.理解方向导数与梯度的概念,并掌握其计算方法.
5.掌握多元复合函数一阶、二阶偏导数的求法.
6.了解隐函数存在定理,会求多元隐函数的偏导数.
7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.
8.了解二元函数的二阶泰勒公式.
9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.
多元函数积分学
考试要求
1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.
2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).
3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.
4.掌握计算两类曲线积分的方法.
5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.
6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.
7.了解散度与旋度的概念,并会计算.
8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等).
无穷级数
考试要求
1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.
2.掌握几何级数与 级数的收敛与发散的条件.
3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.
4.掌握交错级数的莱布尼茨判别法.
5. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.
6.了解函数项级数的收敛域及和函数的概念.
7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.
8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.
9.了解函数展开为泰勒级数的充分必要条件.
10.掌握 , , , 及 的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数.
11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在 上的函数展开为傅里叶级数,会将定义在 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.
常微分方程
考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程及一阶线性微分方程的解法.
3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.
4.会用降阶法解下列形式的微分方程: .
5.理解线性微分方程解的性质及解的结构.
6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.
8.会解欧拉方程.
9.会用微分方程解决一些简单的应用问题. 第一章:行列式
考试内容:
行列式的概念和基本性质 行列式按行(列)展开定理
考试要求:
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
第二章:矩阵
考试内容:
矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换初等矩阵矩阵的秩矩阵等价 分块矩阵及其运算
考试要求:
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.
5.了解分块矩阵及其运算.
第三章:向量
考试内容:
向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间以及相关概念 n维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质
考试要求:
1.理解n维向量、向量的线性组合与线性表示的概念.
2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系
5.了解n维向量空间、子空间、基底、维数、坐标等概念.
6.了解基变换和坐标变换公式,会求过渡矩阵.
7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
8.了解规范正交基、正交矩阵的概念以及它们的性质.
第四章:线性方程组
考试内容:
线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解
考试要求
l.会用克莱姆法则.
2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.
3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组解的结构及通解的概念.
5.掌握用初等行变换求解线性方程组的方法.
第五章:矩阵的特征值及特征向量
考试内容:
矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及相似对角矩阵
考试要求:
1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.
2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.
3.掌握实对称矩阵的特征值和特征向量的性质.
第六章:二次型
考试内容:
二次型及其矩阵表示 合同变换与合同矩阵二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性
考试要求:
1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念 了解二次型的标准形、规范形的概念以及惯性定理.
2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.
3.理解正定二次型、正定矩阵的概念,并掌握其判别法 第一章:随机事件和概率
考试内容:
随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求:
1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.
3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.
第二章:随机变量及其分布
考试内容:
随机变量 随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布
考试要求:
1.理解随机变量的概念.理解分布函数
的概念及性质.会计算与随机变量相联系的事件的概率.
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用.
3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布
及其应用,其中参数为λ(λ>0)的指数分布的概率密度为
5.会求随机变量函数的分布.
第三章:多维随机变量及其分布
考试内容
多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度
随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布
考试要求
1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.
2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.
3.掌握二维均匀分布,了解二维正态分布
的概率密度,理解其中参数的概率意义.
4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.
第四章:随机变量的数字特征
考试内容
随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质
考试要求
1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征
2.会求随机变量函数的数学期望.
第五章:大数定律和中心极限定理
考试内容
切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-laplace)定理 列维-林德伯格(Levy-Lindberg)定理
考试要求
1.了解切比雪夫不等式.
2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律) .
3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理) .
第六章:数理统计的基本概念
考试内容
总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布
考试要求
1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:
2.了解 分布、 分布和 分布的概念及性质,了解上侧 分位数的概念并会查表计算.
3.了解正态总体的常用抽样分布.
第七章:参数估计
考试内容
点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计
考试要求
1.理解参数的点估计、估计量与估计值的概念.
2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.
3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.
4.理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.
第八章:假设检验
考试内容
显著性检验假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验
考试要求
1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.
2.掌握单个及两个正态总体的均值和方差的假设检验

阅读全文

与广东数学初中学业水平考试大纲相关的资料

热点内容
睢宁县第一中学北校区 浏览:349
道里小学中学排名 浏览:226
辽宁重点中学分数线 浏览:174
临夏回民中学2018分数线 浏览:683
合肥市包河区外国语实验中学 浏览:477
龙川实验中学公路改造 浏览:844
呼和浩特中学上下课时间表 浏览:300
2018年沈阳市初中学业水平考试数学 浏览:687
龙川县登云中学校长 浏览:863
北仑中学招生简章 浏览:473
长安一民中学上课时间 浏览:833
盱眙中学2015高考成绩 浏览:284
中学生手球锦标赛 浏览:377
辽宁省实验中学魏民 浏览:670
2018江浦高级中学录取名单 浏览:305
洛阳2019年中学招生信息 浏览:220
蔡家坡初级中学电话 浏览:903
三门启超中学招聘2018 浏览:572
郴州市第三中学贴吧 浏览:716
2019北镇中学分数线 浏览:296