① 初中数学 一元二次方程
|1.已知a、b互为相反数,且2a-b=3,那么a=?b=? ax²+bx-2=0的解是?
a+b=0
2a-b=3
a=1,b=-1
x²-x-2=0
x1=-1,x2=2
2.解方程内: x²-3|x|-1=0
x1=(3+√容13)/2,x2=-(3+√13)/2
② 初三数学 一元二次方程 思维导图
③ 初中数学一元二次方程知识点
只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程。回ax2+bx+c=0(a≠0), 其中ax2叫做二次答项,a叫做二次项的系数;bx叫做一次项,b叫做一次项的系数;c叫做常数项。一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
④ 一元二次方程知识点详细讲解
结合抛物线图形抄及解析式来理解。几种形式之间的转换关系。根与系数之间的关系。
1.一般式:y=ax^2+bx+c. a>0则开口向上,a<0则开口向下
判别式delta=b^2-4ac=a^2(x1-x2)^2
大于0则2相异实根(曲线与X轴相交),等于0则2等实根(曲线与X轴相切),小于0则无实根(曲线与X轴无交点)。
2.顶点式:y=a(x-h)^2+d. h=-b/(2a), d=c-ah^2=(4ac-b^2)/(4a), 由一般式直接配方而来。
顶点为(h, d),a>0时为最小值,a<0时为最大值
x=h为曲线的对称轴。若有两根分别在对称轴的两边
ad<0则有2相异实根,d=0则2等实根,ad>0则无实根。
3.因式分解式:y=a(x-x1)(x-x2)
x1+x2=-b/a, x1x2=c/a,
两根同号则c/a>0, 两根异号则c/a<0
两正根则-b/a>0, 两负根则-b/a<0
⑤ 初三一元二次方程知识点
1)方程的概念抄。(包括各系数的袭认识)
2)特殊方程的解法(开平方法、因式分解法(包括十字相乘法)、配方法),一般方程的公式解法
3)求根公式
4)根的判别式
5)韦达定理
6)利用解方程的方法对代数式在实数范围内
⑥ 一元二次方程知识点
只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax2+bx+c=0(a≠0)。其中ax2叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。
公元前2000年左右,古巴比伦的数学家就能解一元二次方程了。他们是这样描述的:已知一个数与它的倒数之和等于一个已知数,求出这个数。他们使 再做出解答。可见,古巴比伦人已知道一元二次方程的解法,但他们当时并不接受负数,所以负根是略而不提的。古埃及的纸草文书中也涉及到最简单的二次方程。
一元二次方程成立必须同时满足三个条件:
①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。
②只含有一个未知数;
③未知数项的最高次数是2。
含义及特点
(1)一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解。一般情况下,一元二次方程的解也称为一元二次方程的根(只含有一个未知数的方程的解也叫做这个方程的根)。
由代数基本定理,一元二次方程有且仅有两个根(重根按重数计算),根的情况由判别式决定。
⑦ 初中数学一元二次方程
2对,十指相乘后1*(-3)+1*1必须恰好=一次项系数-2,否则调换位置,符号,和数对。
⑧ 数学初中一元二次方程
-(13根2/4)
⑨ 初三数学,一元二次方程知识点
一元二次方程知识点
教学重点:根的判别式定理及逆定理的正确理解和运用
教学难点:根的判别式定理及逆定理的运用。
教学关键:对根的判别式定理及其逆定理使用条件的透彻理解。 主要知识点:
一、一元二次方程
1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式:ax2bxc0(a0),它的特征是:等式左边加一个关于未知数x的二次多项式,等式右边是零,其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。
二、一元二次方程的解法
1、直接开平方法:
利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如(xa)2b的一元二次方程。根据平方根的定义可知,xa是b的平方根,当b0时,xab,xab,当b<0时,方程没有实数根。
2、配方法:
配方法的理论根据是完全平方公式a22abb2(ab)2,把公式中的a看做未知数x,并用x代替,则有x22bxb2(xb)2。
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式
3、公式法
公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程ax2bxc0(a0)的求根公式:
xbb4ac
2a2(b4ac0) 2
公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c
4、因式分解法
因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式
5、韦达定理 利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用
三、一元二次方程根的判别式
根的判别式
一元二次方程ax2bxc0(a0)中,b24ac叫做一元二次方程22axbxc0(a0)的根的判别式,通常用“”来表示,即b4ac I当△>0时,一元二次方程有2个不相等的实数根;
II当△=0时,一元二次方程有2个相同的实数根;
III当△<0时,一元二次方程没有实数根
四、一元二次方程根与系数的关系
如果方程ax2bxc0(a0)的两个实数根是x1,x2,那么x1x2
x1x2caba,。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方
程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
五、一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。 直接开平方法是最基本的方法。
公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算根的判别式的值,以便判断方程是否有解。
配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。