导航:首页 > 初中高中 > 四川省初级中学数学考纲

四川省初级中学数学考纲

发布时间:2020-12-14 17:14:48

1. 求一份天津初中数学的最新考纲

初中学业考试大纲(数 学)

考试范围

《课程标准》(7~9年级)中:数与代数、空间与图形、统计与概率、课题学习四个部分的内容。

一、内容和目标要求

⒈初中毕业生数学学业考试的主要考查方面包括:基础知识与基本技能;数学活动过程;数学思考;解决问题能力;对数学的基本认识等。

⑴基础知识与基本技能考查的主要内容

了解数产生的意义,理解代数运算的意义、算理,能够合理地进行基本运算与估算;能够在实际情境中有效地应用代数运算、代数模型及相关概念解决问题;能够借助不同的方法探索几何对象的有关性质;能够使用不同的方式表达几何对象的大小、位置与特征;能够在头脑里构建几何对象,进行几何图形的分解与组合,能对某些图形进行简单的变换;能够借助数学证明的方法确认数学命题的正确性;正确理解数据的含义,能够结合实际需要有效地表达数据特征,会根据数据结果作合理的预测;了解概率的涵义,能够借助概率模型、或通过设计活动解释一些事件发生的概率。

⑵“数学活动过程”考查的主要方面

数学活动过程中所表现出来的思维方式、思维水平,对活动对象、相关知识与方法的理解深度;从事探究与交流的意识、能力和信心等。

⑶“数学思考”方面的考查应当关注的主要内容

学生在数感与符号感、空间观念、统计意识、推理能力、应用数学的意识等方面的发展情况,其内容主要包括:

能用数来表达和交流信息;能够使用符号表达数量关系,并借助符号转换获得对事物的理解;能够观察到现实生活中的基本几何现象;能够运用图形形象来表达问题、借助直观进行思考与推理;能意识到作一个合理的决策需要借助统计活动去收集信息;面对数据时能对它的来源、处理方法和由此而得到的推测性结论作合理的质疑;面对现实问题时,能主动尝试从数学角度、用数学思维方法去寻求解决问题的策略;能通过观察、实验、归纳、类比等活动获得数学猜想,并寻求证明猜想的合理性;能合乎逻辑地与他人交流等等。

⑷“解决问题能力”考查的主要方面:

能从数学角度提出问题、理解问题、并综合运用数学知识解决问题;具有一定的解决问题的基本策略。

⑸“对数学的基本认识”考查的主要方面:

对数学内部统一性的认识(不同数学知识之间的联系、不同数学方法之间的相似性等);对数学与现实、或其他学科知识之间联系的认识等等。

⒉依据《课程标准》,考试要求的知识技能目标分为四个不同层次:了解(认识);理解;掌握;灵活运用。具体涵义如下:

了解(认识):能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象。

理解:能描述对象的特征和由来;能明确阐述此对象与有关对象之间的区别和联系。

掌握:能在理解的基础上,把对象运用到新的情境中。

灵活运用:能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。

数学活动水平的过程性目标分为三个不同层次:经历(感受);体验(体会);探索。具体涵义如下:

经历(感受):在特定的数学活动中,获得一些初步的经验。

体验(体会):参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验。

探索:主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其它对象的区别和联系。

以下对《课程标准》中,数与代数、空间与图形、统计与概率、课题学习四个领域的具体考试内容与要求分述如下:

数 与 代 数

(一)数与式

⒈有理数

考试内容:

有理数,数轴,相反数,数的绝对值,有理数的加、减、乘、除、乘方,加法运算律,乘法运算律,简单的混合运算。

考试要求:

(1)理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。

(2)理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母)。

(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方的运算法则、运算律、运算顺序以及简单的有理数的混合运算(以三步为主)。

(4)能用有理数的运算律简化有关运算,能用有理数的运算解决简单的问题。

⒉实数

考试内容:

无理数,实数,平方根,算术平方根,立方根,近似数和有效数字,

二次根式,二次根式的加、减、乘、除运算法则,简单的实数四则运算。

考试要求:

(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。

(2)了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用科学计算器求平方根和立方根。

(3)了解无理数和实数的概念,知道实数与数轴上的点一一对应。

(4)能用有理数估计一个无理数的大致范围。

(5)了解近似数与有效数字的概念,会按要求求一个数的近似数,在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值。

(6)了解二次根式的概念及其加、减、乘、除运算法则,会用运算法则进行有关实数的简单四则运算(不要求分母有理化)。

⒊代数式

考试内容:

代数式,代数式的值,合并同类项,去括号。

考试要求:

(1)了解用字母表示数的意义。

(2)能分析简单问题的数量关系,并用代数式表示。

(3)能解析一些简单代数式的实际背景或几何意义。

(4)会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算。

(5)掌握合并同类项的方法和去括号的法则,能进行同类项的合并。

⒋整式与分式

考试内容:

整式,整式加减,整式乘除,整数指数幂,科学记数法。

乘法公式: 。

因式分解,提公因式法,公式法。

分式、分式的基本性质,约分,通分,分式的加、减、乘、除运算。

考试要求:

(1)了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示)。

(2)了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘)。

(3)会推导乘法公式: ; ,了解公式的几何背景,并能进行简单计算。

(4)会用提公因式法和公式法(直接用公式不超过两次)进行因式分解(指数是正整数)。

(5)了解分式的概念,掌握分式的基本性质,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算。

(二)方程与不等式

⒈方程与方程组

考试内容:

方程和方程的解,一元一次方程及其解法,一元二次方程及其解法,二元一次方程组及其解法,可化为一元一次方程的分式方程(方程中的分式不超过两个)。

考试要求:

(1)能够根据具体问题中的数量关系列出方程,体会方程是刻画现实世界的一个有效的数学模型。

(2)会用观察、画图或计算器等手段估计方程的解。

(3)会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中的分式不超过两个)。

(4)理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程。

(5)能根据具体问题的实际意义,检验方程的解的合理性。

⒉不等式与不等式组

考试内容:

不等式,不等式的基本性质,不等式的解集,一元一次不等式及其解法,一元一次不等式组及其解法。

考试要求:

(1)能够根据具体问题中的大小关系了解不等式的意义,掌握不等式的基本性质。

(2)会解简单的一元一次不等式,并能在数轴上表示出解集。会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。

(3)能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的问题。

(三)函数

⒈函数

考试内容:

平面直角坐标系,常量,变量,函数及其表示法。

考试要求:

(1)会从具体问题中寻找数量关系和变化规律。

(2)了解常量、变量、函数的意义,了解函数的三种表示方法,会用描点法画出函数的图象,能举出函数的实际例子。

(3)能结合图象对简单实际问题中的函数关系进行分析。

(4)能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值。

(5)能用适当的函数表示法刻画某些实际问题中变量之间的关系。

(6)结合对函数关系的分析,尝试对变量的变化规律进行初步预测。

⒉一次函数

考试内容:

一次函数,一次函数的图象和性质,二元一次方程组的近似解。

考试要求:

(1)理解正比例函数、一次函数的意义,会根据已知条件确定一次函数表达式。

(2)会画一次函数的图象,根据一次函数的图象和解析式 ,理解其性质(k>0或k<0时图象的变化情况)。

(3)能根据一次函数的图象求二元一次方程组的近似解。

(4)能用一次函数解决实际问题。

⒊反比例函数

考试内容:

反比例函数,反比例函数图象及其性质。

考试要求:

(1)理解反比例函数的意义,能根据已知条件确定反比例函数的表达式。

(2)能画出反比例函数的图象,根据图象和解析式 理解其性质(k>0或k<0时,图象的变化情况)。

(3)能用反比例函数解决某些实际问题。

⒋二次函数

考试内容:

二次函数及其图象,一元二次方程的近似解。

考试要求:

(1)理解二次函数和抛物线的有关概念,能对实际问题情境的分析确定二次函数的表达式。

(2)会用描点法画出二次函数的图象,能结合图象认识二次函数的性质。

(3)会根据公式确定图象的顶点、开口方向和对称轴(公式不要求推导和记忆),并能解决简单的实际问题。

(4)会利用二次函数的图象求一元二次方程的近似解。

空 间 与 图 形

(一)图形的认识

⒈点、线、面,角。

考试内容:

点、线、面、角、角平分线及其性质。

考试要求:

(1)在实际背景中认识,理解点、线、面、角的概念。

(2)会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、分、秒,会进行简单换算。

(3)掌握角平分线性质定理及逆定理。

⒉相交线与平行线

考试内容:

补角,余角,对顶角,垂线,点到直线的距离,线段垂直平分线及其性质,平行线,平行线之间的距离,两直线平行的判定及性质。

考试要求:

(1)了解补角、余角、对顶角的概念,知道等角的余角相等、等角的补角相等、对顶角相等。

(2)了解垂线、垂线段等概念,会用三角尺或量角器过一点画一条直线的垂线。了解垂线段最短的性质,理解点到直线距离的意义。

(3)知道过一点有且仅有一条直线垂直于已知直线。

(4)掌握线段垂直平分线性质定理及逆定理。

(5)了解平行线的概念及平行线基本性质,

(6)掌握两直线平行的判定及性质。

(7)会用三角尺和直尺过已知直线外一点画这条直线的平行线。

(8)体会两条平行线之间距离的意义,会度量两条平行线之间的距离。

⒊三角形

考试内容:

三角形,三角形的角平分线、中线和高,三角形中位线,全等三角形、全等三角形的判定,等腰三角形的性质及判定。等边三角形的性质及判定。直角三角形的性质及判定。勾股定理。勾股定理的逆定理。

考试要求:

(1)了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高。

(2)掌握三角形中位线定理。

(3)了解全等三角形的概念,掌握两个三角形全等的判定定理。

(4)了解等腰三角形、直角三角形、等边三角形的有关概念,掌握等腰三角形、直角三角形、等边三角形的性质和判定定理;

(5)掌握勾股定理,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形。

⒋四边形

考试内容:

多边形,多边形的内角和与外角和,正多边形,平行四边形、矩形、菱形、正方形、梯形的概念和性质,平面图形的镶嵌。

考试要求:

(1)了解多边形的内角和与外角和公式,了解正多边形的概念。

(2)掌握平行四边形、矩形、菱形、正方形、梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性。

(3)掌握平行四边形、矩形、菱形、正方形、等腰梯形的有关性质和判定定理。

(4)了解线段、矩形、平行四边形、三角形的重心及物理意义(如一根均匀木棒、一块均匀的矩形木板的重心)。

(5)通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计。

⒌圆

考试内容:

圆,弧、弦、圆心角的关系,点与圆、直线与圆以及圆与圆的位置关系,圆周角与圆心角的关系,三角形的内心和外心,切线的性质和判定,弧长,扇形的面积,圆锥的侧面积、全面积。

考试要求:

(1)理解圆及其有关概念,了解弧、弦、圆心角的关系,了解点与圆、直线与圆以及圆与圆的位置关系。

(2)了解圆的性质,了解圆周角与圆心角的关系、直径所对圆周角的特征。

(3)了解三角形的内心和外心。

(4)了解切线的概念、切线与过切点的半径之间的关系;能判定一条直线是否为圆的切线,会过圆上一点画圆的切线。

(5)会计算弧长及扇形的面积,会计算圆锥的侧面积和全面积。

⒍尺规作图

考试内容:

基本作图,利用基本作图作三角形,过一点、两点和不在同一直线上的三点作圆。

考试要求:

(1)能完成以下基本作图:作一条线段等于已知线段;作一个角等于已知角;作角的平分线;作线段的垂直平分线。

(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形。

(3)能过一点、两点和不在同一直线上的三点作圆。

(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明)。

⒎视图与投影

考试内容:

简单几何体的三视图,直棱柱、圆锥的侧面展开图,视点、视角,盲区,投影。

考试要求:

(1)会画简单几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图)的示意图,会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型。

(2)了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型。

(3)了解基本几何体与其三视图、展开图(球除外)之间的关系;知道这种关系在现实生活中的应用(如物体的包装)。

(4)了解并欣赏一些有趣的图形(如雪花曲线、莫比乌斯带)。

(5)知道物体阴影的形成,并能根据光线的方向辨认实物的阴影(如在阳光或灯光下,观察手的阴影或人的身影)。

(6)了解视点、视角及盲区的含义,能在简单的平面图和立体图中表示。

(7)了解中心投影和平行投影。

(二)图形与变换

⒈图形的轴对称、图形的平移、图形的旋转。

考试内容:

轴对称、平移、旋转。

考试要求:

(1)通过具体实例认识轴对称(或平移、旋转),探索它们的基本性质;

(2)能够按要求作出简单平面图形经过轴对称(或平移、旋转)后的图形,能作出简单平面图形经过一次或两次轴对称后的图形;

(3)探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称(或平移、旋转)的性质及其相关性质。

(4)利用轴对称(或平移、旋转)及其组合进行图案设计;认识和欣赏轴对称(或平移、旋转)在现实生活中的应用。

⒉图形的相似

考试内容:

比例的基本性质,线段的比,成比例线段,图形的相似及性质,三角形相似的条件,图形的位似,锐角三角函数,30 、45 、60 角的三角函数值。

考试要求:

(1)了解比例的基本性质,了解线段的比、成比例线段,通过实例了解黄金分割。

(2)通过实例认识图形的相似,了解相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边比的平方。

(3)了解两个三角形相似的概念,掌握两个三角形相似的条件。

(4)了解图形的位似,能够利用位似将一个图形放大或缩小。

(5)通过实例了解物体的相似,利用图形的相似解决一些实际问题(如利用相似测量旗杆的高度)。

(6)通过实例认识锐角三角函数(sinA,cosA, tanA),知道30 、45 、60 角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角。

(7)运用三角函数解决与直角三角形有关的简单实际问题。

(三)图形与坐标

考试内容:

平面直角坐标系。

考试要求:

(1)认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标。

(2)能在方格纸上建立适当的直角坐标系,描述物体的位置。

(3)在同一直角坐标系中,感受图形变换后点的坐标的变化。

(4)灵活运用不同的方式确定物体的位置。

(四)图形与证明

⒈了解证明的含义

考试内容:

定义、命题、逆命题、定理,定理的证明,反证法。

考试要求:

(1)理解证明的必要性。

(2)通过具体的例子,了解定义、命题、定理的含义,会区分命题的条件(题设)和结论。

(3)结合具体例子,了解逆命题的概念,会识别两个互逆命题,并知道原命题成立其逆命题不一定成立。

(4)理解反例的作用,知道利用反例可以证明一个命题是错误的。

(5)通过实例,体会反证法的含义。

(6)掌握用综合法证明的格式,体会证明的过程要步步有据。

⒉掌握证明的依据

考试内容:

一条直线截两条平行直线所得的同位角相等;

两条直线被第三条直线所截,若同位角相等,那么这两条直线平行;

若两个三角形的两边及其夹角分别相等,则这两个三角形全等;

两个三角形的两角及其夹边分别相等,则这两个三角形全等;

两个三角形的三边分别相等,则这两个三角形全等;

全等三角形的对应边、对应角分别相等。

考试要求:

运用以上6条“基本事实”作为证明命题的依据。

⒊利用2中的基本事实证明下列命题

考试内容:

(1)平行线的性质定理(内错角相等、同旁内角互补)和判定定理(内错角相等或同旁内角互补,则两直线平行)。

(2)三角形的内角和定理及推论(三角形的外角等于不相邻的两内角的和,三角形的外角大于任何一个和它不相邻的内角)。

(3)直角三角形全等的判定定理。

(4)角平分线性质定理及逆定理;三角形的三条角平分线交于一点(内心)。

(5)垂直平分线性质定理及逆定理;三角形的三边的垂直平分线交干一点(外心)。

(6)三角形中位线定理。

(7)等腰三角形、等边三角形、直角三角形的性质和判定定理。

(8)平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理。

考试要求:

(1)会利用2中的基本事实证明上述命题。

(2)会利用上述定理证明新的命题。

(3)练习和考试中与证明有关的题目难度,应与上述所列的命题的论证难度相当。

⒋通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值。

统 计 与 概 率

⒈统计

考试内容:

数据,数据的收集、整理、描述和分析。

抽样,总体,个体,样本。

扇形统计图。

加权平均数,数据的集中程度与离散程度,极差和方差。

频数、频率,频数分布,频数分布表、直方图、折线图。

样本估计总体,样本的平均数、方差,总体的平均数、方差。

统计与决策,数据信息,统计在社会生活及科学领域中的应用。

考试要求:

(1)会收集、整理、描述和分析数据,能用计算器处理较为复杂的统计数据。

(2)了解抽样的必要性,能指出总体、个体、样本。知道不同的抽样可能得到不同的结果。

(3)会用扇形统计图表示数据。

(4)理解并会计算加权平均数,能根据具体问题,选择合适的统计量表示数据的集中程度。

(5)会探索如何表示一组数据的离散程度,会计算极差与方差,并会用它们表示数据的离散程度。

(6)理解频数、频率的概念,了解频数分布的意义和作用。会列频数分布表,画频数分布直方图和频数折线图,并能解决简单的实际问题。

(7)体会用样本估计总体的思想,能用样本的平均数、方差来估计总体的平均数和方差。

(8)能根据统计结果做出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观点,并进行交流。

(9)能根据问题查找相关资料,获得数据信息,会对日常生活中的某些数据发表自己的看法。

(10)能应用统计知识解决在社会生活及科学领域中一些简单的实际问题。

⒉概率

考试内容:

事件、事件的概率,列举法(包括列表、画树状图)计算简单事件的概率。

实验与事件发生的频率、大量重复实验与事件发生概率的估计。

运用概率知识解决实际问题。

考试要求:

(1)在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。

(2)通过实验,获得事件发生的频率;知道大量重复实验时频率可作为事件发生概率的估计值。

(3)能运用概率知识解决一些实际问题。

课 题 学 习

考试内容:

课题的提出、数学模型、问题解决。

数学知识的应用、研究问题的方法。

考试要求:

(1)结合实际,会提出、探讨一些具有挑战性的研究课题,经历“问题情境—建立模型—求解—解释与应用”的基本过程。进而体验从实际问题抽象出数学问题、建立数学模型,综合应用已有的知识解决问题的过程。加深理解相关的数学知识,发展思维能力。

(2)体验数学知识之间的内在联系、初步形成对数学整体性的认识。

(3)理解数学知识在实际问题中的应用,初步掌握一些研究问题的方法与经验。

六、考试形式、时间

考试采用闭卷笔试形式。考试时间120分钟。

七、试题难度

合理安排试题难度结构。容易题、中档题和稍难题的比例约为8:1:1。考试合格率达80%。

八、试卷结构

全卷满分150分。试卷包含有填空题、选择题和解答题三种题型。三种题型的占分比例约为:填空题占25%,选择题占12.5%,解答题占62.5%。

填空题只要求直接填写结果,不必写出计算过程或推证过程;选择题是四选一型的单项选择题;解答题包括计算题、证明题、应用题、作图题等,解答题应写出文字说明、演算步骤、推证过程或按题目要求正确作图。应设计结合现实情境的开放性、探索性问题,杜绝人为编造的繁难计算题和证明题。

全卷总题量(含小题)控制在25~30题,较为适宜。

2. 跪求2012四川省文科数学高考考试大纲和说明

Ⅰ.考试性质
普通高等学校招生全国统一考试是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试,高等学校根据考生的成绩,按已确定的招生计划,德、智、体、全面衡量,择优录取,因此,高考应有较高的信度、效度,必要的区分度和适当的难度.
Ⅱ.考试要求
《2011年普通高等学校招生全国统一考试大纲(文科)》中的数学科部分,根据普通高等学校对新生文化素质的要求,依据国家教育部2002年颁布的《全日制普通高级中学课程计划》和《全日制普通高级中学数学教学大纲》的必修课与选修I的教学内容,作为文史类高考数学科试题的命题范围.
数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力与素质考查融为一体,全面检测考生的数学素养.
数学科考试要发挥数学作为基础学科的作用,既考查中学数学知识和方法,又考查考生进入高校继续学习的潜能.
一、考试内容的知识要求、能力要求和个性品质要求
1.知识要求
知识是指《全日制普通高级中学数学教学大纲》所规定的教学内容中的数学概念、性质、法则、公式、公理、定理以及其中的数学思想和方法.
对知识的要求,依此为了解、理解和掌握、灵活和综合运用三个层次.
(1)了解:要求对所列知识的含义及其相关背景有初步的、感性的认识,知道这一知识内容是什么,并能(或会)在有关的问题中识别它.
(2)理解和掌握:要求对所列知识内容有较深刻的理论认识,能够解释、举例或变形、推断,并能利用知识解决有关问题.
(3)灵活和综合运用:要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题.
2.能力要求
能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识.
(1)思维能力:会对问题或资料进行观察、比较、分析、综合、抽象与概括;会用类比、归纳和演绎进行推理;能合乎逻辑地、准确地进行表述.
数学是一门思维的科学,思维能力是数学学科能力的核心.数学思维能力是以数学知识为素材,通过空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明和模式构建等诸方面,对客观事物中的空间形式、数量关系和数学模式进行思考和判断,形成和发展理性思维,构成数学能力的主体.
(2)运算能力:会根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件和目标,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.
运算能力是思维能力和运算技能的结合.运算包括对数值的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力以及实施运算和计算的技能。
(3)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合与变换;会运用图形与图表等手段形象地揭示问题的本质.
空间想象能力是对空间形式的观察、分析、抽象的能力.主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言,以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.
(4)实践能力:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模式;能应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表述和说明.
实践能力是将客观事物数学化的能力.主要过程是依据现实的生活背景,提炼相关的数量关系,构想数学模式,将现实问题转化为数学问题,并加以解决.
(5)创新意识:对新颖的信息、情境和设问,选择有效的方法和手段分析信息,综合与灵活地应用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.
创新意识是理性思维的高层表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.
3.个性品质要求
个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的习惯,体会数学的美学意义.
要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.
二、考查要求
数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识在各自的发展过程中的纵向联系和各部分知识之间的横向联系.要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的结构框架.
(1)对数学基础知识的考查,要既全面又突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度.
(2)对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过数学知识的考查,反映考生对数学思想和方法的理解;要从学科整体意义和思想价值立意,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.
(3)对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料.侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.
对能力的考查,以思维能力为核心,全面考查各种能力,强调综合性、应用性,并切合考生实际.对思维能力的考查贯穿于全卷,重点体现对理性思维的考查,强调思维的科学性、严谨性、抽象性.对运算能力的考查主要是对算理和逻辑推理的考查,考查时以代数运算为主,同时也考查估算、简算.对空间想象能力的考查,主要体现在对文字语言、符号语言及图形语言三种语言的互相转化,表现为对图形的识别、理解和加工,考查时要与运算能力、逻辑思维能力相结合.
(4)对实践能力的考查主要采用解决应用问题的形式.命题时要坚持“贴进生活,背景公平,控制难度”的原则,试题设计要切合我国中学数学教学的实际,考虑考生的年龄特点和实践经验,使数学应用问题的难度符合考生的水平.
(5)对创新意识的考查是对高层次理性思维的考查.在考试中创设比较新颖的问题情境,构造有一定深度和广度的数学问题,要注重问题的多样化,体现思维的发散性.精心设计考查数学主体内容,体现数学素质的试题;反映数、形运动变化的试题;研究型、探索型、开放型的试题.
数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,注重展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和现实性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.

3. 2012年四川省广元市中考各科考试说明,或者考纲

1.考试科目
学业考试与招生考试二合一科目:语文、数学、英语、物回理(含实验操作)、答化学(含实验操作)、思品、历史、体育。
学业考试科目:生物、地理。
2.考试方式
①市统一考试科目:语文、数学、英语、物理、化学、思品、历史、理科实验操作、体育。
②县区组织考试科目:生物、地理。市教育局负责命题、制卷工作;县区教育(教科)局负责组织考试、评卷工作。
③语文、数学、英语实行分科闭卷考试;物理与化学、思品与历史、地理与生物均实行分科闭卷合堂考试。
3.科目分值
语文、数学、英语各120分(不考听力);物理100分(其中物理实验操作10分);化学70分(其中化学实验操作10分);思品、历史各50分;体育50分。
地理和生物各50分 。
4.考试时间
①2012年6月13—15日考语文、数学、英语、物理与化学、思品与历史。语文、数学、英语各考120分钟;物理与化学、思品与历史合堂分卷共考120分钟(不含实验操作考试时间)。
②2012年6月16日考地理与生物(八年级)。
③2012年5月份内考理科实验操作、体育。

4. 2020初中数学教师资格证考试大纲

【导读】我们知道,在教师资格证考试中学学段考试科目还有一科,那就是学科科目考试,考的学科不同,对应的考试科目也是不一样的,比如你考的是语文教师资格证,那么学科科目考察的就是语文学科知识,数学对应的就是数学学科知识...接下来我们就来具体了解一下2020初中数学教师资格证考试大纲。

关于2020初中数学教师资格证考试大纲的详细内容,就给大家介绍到这里了,对于试卷结构中占分比例比较大的部分,大家一定要重点复习,加油!

5. 浙江数学的中考考纲

一、品读
2009中考数学考试说明对2008年数学考试说明进行了继承延续和变革调整:考试性质、考试范围、考试要求没有太大变化,只是措词有所改变;考试形式及试卷结构略有不同,只是进行了删减;考试内容与要求有所变化,更为明确具体。
(一)考试形式及试卷结构的调整
删掉了填空、选择、解答题三种题型的分数百分比(08年选择题17%,填空题20%,解答题63%)。
(二)考试内容与要求的变化
1.数与式单元
①有理数部分增加了对绝对值、相反数的具体要求【“知道1a1的含义(a表示有理数),会用有理数表示具有相反意义的量,掌握相反数的性质” 】。
②实数部分增加了对二次根式的要求【“会确定二次根式有意义的条件” 】。
③代数式部分考试要求中增加了代数式值的内容【“能通过代数式的适当变形求代数式的值,
能根据代数式的值或特征推断代数式反应的规律” 】。
④整式与分式部分
整式考试要求增加了“理解单项式的系数和次数,多项式的次数、项和项数的概念,明确它们之间的关系。能理解运用整式加、减运算构造多项式,进一步解决问题。能运用因式分解的知识进行代数式的变形,从而解决有关问题”。
分式考试要求增加了“会确定分式有意义的条件。能灵活运用恰当的方法解决与分式有关的问题”。
2.方程与不等式单元
①方程部分增加了解决实际问题的明确要求【“会运用方程的解的概念解决有关问题。列一元一次方程、二元一次方程、分式方程、一元二次方程解决实际问题” 】。
②不等式部分补充了用数轴确定解集的要求【(根据条件求整数解)】
3.函数单元
①函数常识部分对第一条作了补充【具体问题“能用适当函数表示” 】增加了第七条:“在平面直角坐标系中,会根据坐标描出点的位置;会由点的位置写出它的坐标”。
②一次函数部分增加了“会根据一次函数的表达式求其图像与两坐标轴的交点坐标。”
③二次函数部分增加了二次函数与其他知识的联系【“能解决二次函数与其他知识结合的有关问题” 】。
{“空间与图形部分”和“统计与概率部分”依据通知在此略 }
总之:内容“删”少“增”多,要求明确灵活。同仁用心把握,中考会多“斩”获。
二、复习策略
(一)优化数学思想方法
数学思想是数学的灵魂,数学方法使数学思想得以具体落实,二者相互依存,成为数学中考永恒的主题。因此必须使学生深谙数学思想方法本质并对其优化,真正体会数学思想方法的重要性并解决实际问题。
(二)增加练习开放程度
开放性题目是近几年中考的热点,几乎成为必考题型。常见的开放题主要有条件开放型、结论开放型、策略开放性和综合开放型四大类。
(三)强化数学的应用意识
对数学知识应用性的考查,已经成为各地中考的普遍趋势,这是强化“用数学”意识的必然结果,今年尤为明显,从今年增加的考试要求可见一斑。在河北的中考题中,应用性问题已经占到了相当大的比重,每个题目的出现都会以实际问题或动手操作为背景,达到考查学生运用数学知识解决实际问题的能力。
(四)注意加强综合题训练力度
综合题一直是中考复习最后阶段的重点和难点。综合题所考查的内容涉及初中代数(或几何)中若干不同的知识点,这就需要同学们既要扎实地掌握好数学基础知识,又具备灵活综合运用数学知识解决问题的能力。在近年的中考命题中,综合题基本定位在运动型问题。

6. 求深圳市2017-2018中考数学考试大纲和考试说明!

. 考核目标与要求 根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的专《普通高中课程属方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列2和系列4的内容,确定理工类高考数学科考试内容. 一

阅读全文

与四川省初级中学数学考纲相关的资料

热点内容
睢宁县第一中学北校区 浏览:349
道里小学中学排名 浏览:226
辽宁重点中学分数线 浏览:174
临夏回民中学2018分数线 浏览:683
合肥市包河区外国语实验中学 浏览:477
龙川实验中学公路改造 浏览:844
呼和浩特中学上下课时间表 浏览:300
2018年沈阳市初中学业水平考试数学 浏览:687
龙川县登云中学校长 浏览:863
北仑中学招生简章 浏览:473
长安一民中学上课时间 浏览:833
盱眙中学2015高考成绩 浏览:284
中学生手球锦标赛 浏览:377
辽宁省实验中学魏民 浏览:670
2018江浦高级中学录取名单 浏览:305
洛阳2019年中学招生信息 浏览:220
蔡家坡初级中学电话 浏览:903
三门启超中学招聘2018 浏览:572
郴州市第三中学贴吧 浏览:716
2019北镇中学分数线 浏览:296